1 序文
2 調査範囲と方法論
2.1 調査の目的
2.2 ステークホルダー
2.3 データソース
2.3.1 一次情報源
2.3.2 二次情報源
2.4 市場推定
2.4.1 ボトムアップアプローチ
2.4.2 トップダウンアプローチ
2.5 予測方法
3 エグゼクティブ・サマリー
4 はじめに
4.1 概要
4.2 主要産業動向
5 農業用ロボットの世界市場
5.1 市場概要
5.2 市場パフォーマンス
5.3 COVID-19の影響
5.4 製品タイプ別市場構成
5.5 用途別市場構成
5.6 オファリング別市場構成比
5.7 地域別市場構成比
5.8 市場予測
6 製品タイプ別市場構成
6.1 無人航空機(UAV)/ドローン
6.1.1 市場動向
6.1.2 市場予測
6.2 搾乳ロボット
6.2.1 市場動向
6.2.2 市場予測
6.3 自動収穫システム
6.3.1 市場動向
6.3.2 市場予測
6.4 ドライバーレストラクター
6.4.1 市場動向
6.4.2 市場予測
6.5 その他
6.5.1 市場動向
6.5.2 市場予測
7 用途別市場
7.1 畑作
7.1.1 市場動向
7.1.2 市場予測
7.2 酪農経営
7.2.1 市場動向
7.2.2 市場予測
7.3 動物管理
7.3.1 市場動向
7.3.2 市場予測
7.4 土壌管理
7.4.1 市場動向
7.4.2 市場予測
7.5 作物管理
7.5.1 市場動向
7.5.2 市場予測
7.6 その他
7.6.1 市場動向
7.6.2 市場予測
8 オファリング別市場内訳
8.1 ハードウェア
8.1.1 市場動向
8.1.2 市場予測
8.2 ソフトウェア
8.2.1 市場動向
8.2.2 市場予測
8.3 サービス
8.3.1 市場動向
8.3.2 市場予測
9 地域別市場内訳
9.1 北米
9.1.1 市場動向
9.1.2 市場予測
9.2 欧州
9.2.1 市場動向
9.2.2 市場予測
9.3 アジア太平洋
9.3.1 市場動向
9.3.2 市場予測
9.4 中東・アフリカ
9.4.1 市場動向
9.4.2 市場予測
9.5 中南米
9.5.1 市場動向
9.5.2 市場予測
10 世界の農業ロボット産業SWOT分析
10.1 概要
10.2 強み
10.3 弱点
10.4 機会
10.5 脅威
11 世界の農業ロボット産業:バリューチェーン分析
12 世界の農業用ロボット産業ポーターズファイブフォース分析
12.1 概要
12.2 買い手の交渉力
12.3 供給者の交渉力
12.4 競争の程度
12.5 新規参入の脅威
12.6 代替品の脅威
13 世界の農業用ロボット産業:価格分析
14 農業用ロボットの製造工程
14.1 製品概要
14.2 原材料要件
14.3 製造プロセス
14.4 主な成功要因とリスク要因
15 競争環境
15.1 市場構造
15.2 主要プレーヤー
15.3 主要プレーヤーのプロフィール
15.3.1 ディア・アンド・カンパニー
15.3.2 Trimble Inc.
15.3.3 Agco Corporation
15.3.4 Lely Holding S.À.R.L
15.3.5 AG Eagle LLC
15.3.6 Agribotix LLC
15.3.7 アグロボット
15.3.8 ハーベスト・オートメーション
15.3.9 ナイオ・テクノロジー
15.3.10 プレシジョンホーク
15.3.11 IBM
15.3.12 アグジャンクション社
15.3.13 DJI
15.3.14 Boumatic Robotics, B.V.
15.3.15 AGリーダーテクノロジー
15.3.16 Topcon Positioning Systems, Inc.
15.3.17 オートコプター
15.3.18 Auroras S.R.L.
15.3.19 グローネティクス社
15.3.20 オートノミー・トラクター・コーポレーション
図1:世界:農業ロボット市場:主な推進要因と課題
図2:世界:農業用ロボット市場:販売額(単位:億米ドル)、2019年~2024年
図3:世界:農業用ロボット市場:図3:農業用ロボットの世界市場:製品タイプ別構成比(単位:%)、2024年
図4:農業用ロボットの世界市場:用途別構成比(単位:%)、2024年用途別構成比(単位:%)、2024年
図5:農業用ロボットの世界市場:農業用ロボットの世界市場:用途別構成比(%)、2024年
図6:農業用ロボットの世界市場:地域別構成比(%)、2024年
図7:農業用ロボットの世界市場予測:販売金額(単位:億米ドル)、2025年~2033年
図8:世界:農業用ロボット産業:SWOT分析
図9:世界:農業用ロボット産業:バリューチェーン分析
図10:世界:農業用ロボット産業:ポーターのファイブフォース分析
図11:世界:農業用ロボット(無人航空機(UAV)/ドローン)市場:販売額(単位:百万米ドル)、2019年・2024年
図12:世界:農業用ロボット(無人航空機(UAV)/ドローン)市場予測:販売額(単位:百万米ドル)、2025年〜2033年
図13:世界の農業用ロボット(搾乳ロボット)市場:販売金額(単位:百万米ドル)、2019年・2024年
図14:農業用ロボット(搾乳ロボット)の世界市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図15:世界の農業用ロボット(自動収穫システム)市場:販売金額(単位:百万米ドル)、2019年・2024年
図16:農業用ロボット(自動収穫システム)の世界市場予測:販売額(単位:百万米ドル)、2025年~2033年
図17:農業用ロボット(無人トラクター)の世界市場:販売額(単位:百万米ドル)、2019年・2024年
図18:農業用ロボット(無人トラクター)の世界市場予測:販売額(単位:百万米ドル)、2025年~2033年
図19:世界の農業用ロボット(その他の製品タイプ)市場:販売金額(単位:百万米ドル)、2019年・2024年
図20:農業用ロボット(その他製品タイプ)の世界市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図21:世界の農業用ロボット(畑作)市場:販売金額(単位:百万米ドル)、2019年・2024年
図22:農業用ロボット(畑作)の世界市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図23:世界の農業用ロボット(酪農場管理)市場:販売金額(単位:百万米ドル)、2019年・2024年
図24:農業用ロボット(酪農場管理)の世界市場予測:販売額(単位:百万米ドル)、2025年~2033年
図25:世界:農業用ロボット(畜産管理)市場:販売金額(単位:百万米ドル)、2019年・2024年
図26:世界:農業用ロボット(動物管理)市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図27:世界:農業用ロボット(土壌管理)市場:販売金額(単位:百万米ドル)、2019年・2024年
図28:世界:農業用ロボット(土壌管理)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図29:世界:農業用ロボット(作物管理)市場:販売金額(単位:百万米ドル)、2019年・2024年
図30:世界:農業用ロボット(作物管理)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図31:世界:農業用ロボット(その他の用途)市場:販売金額(単位:百万米ドル)、2019年・2024年
図32:世界:農業用ロボット(その他用途)市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図33:世界:農業用ロボット(ハードウェア)市場:販売金額(単位:百万米ドル)、2019年・2024年
図34:世界:農業用ロボット(ハードウェア)市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図35:世界:農業用ロボット(ソフトウェア)市場:販売金額(単位:百万米ドル)、2019年・2024年
図36:世界:農業用ロボット(ソフトウェア)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図37:世界:農業用ロボット(サービス)市場:販売金額(単位:百万米ドル)、2019年・2024年
図38:世界:農業用ロボット(サービス)市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図39:北米:農業用ロボット市場:販売金額(単位:百万米ドル)、2019年・2024年
図40:北米:農業用ロボット市場予測農業用ロボット市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図41:ヨーロッパ:農業用ロボット市場:販売金額(単位:百万米ドル)、2019年および2024年
図42:ヨーロッパ:農業用ロボットの市場予測農業用ロボット市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図43:アジア太平洋:農業用ロボット市場:販売金額(単位:百万米ドル)、2019年および2024年
図44:アジア太平洋地域:農業用ロボット市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図45:中東およびアフリカ:農業用ロボット市場:販売金額(単位:百万米ドル)、2019年および2024年
図46:中東およびアフリカ:農業用ロボット市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図47:中南米:農業用ロボット市場:販売金額(単位:百万米ドル)、2019年および2024年
図48:ラテンアメリカ:農業用ロボット市場予測:販売金額(単位:百万米ドル)、2025年~2033年
図49:農業用ロボットの製造:プロセスフロー
表一覧
表1:世界:農業用ロボット市場:主要産業ハイライト、2024年と2033年
表2:世界:農業用ロボット市場予測:製品タイプ別内訳(単位:百万米ドル)、2025年~2033年
表3:農業用ロボットの世界市場予測:用途別構成比(単位:百万米ドル)、2025年~2033年
表4:農業用ロボットの世界市場予測:オファリング別内訳(単位:百万米ドル)、2025年~2033年
表5:農業用ロボットの世界市場予測:地域別構成比(単位:百万米ドル)、2025年~2033年
表6:農業用ロボット:原材料所要量
表7:世界の農業用ロボット市場構造
表8:農業用ロボットの世界市場:主要プレイヤー
The global agricultural robots market size reached USD 10.4 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 38.0 Billion by 2033, exhibiting a growth rate (CAGR) of 15.4% during 2025-2033. The labor shortages, significant technological advancements, growing environmental concerns, government support, cost reduction and resource optimization and the rising need for increased efficiency and productivity in farming operations are some of the major factors propelling the market.
Agricultural robots, also known as agribots, are specialized machines designed to perform various tasks in the agricultural industry. These robots are equipped with advanced technologies and capabilities that enable them to carry out specific agricultural activities autonomously or with minimal human intervention. They are utilized in a wide range of applications, including planting, seeding, weeding, harvesting, and crop monitoring. They are designed to navigate through fields, operate in diverse weather conditions, and interact with plants and soil. These robots can be programmed to perform tasks efficiently and accurately, contributing to increased productivity and reduced labor costs in the agricultural sector. The functionality of these robots varies depending on their purpose. For instance, planting robots use precision techniques to sow seeds at optimal depths and spacing, ensuring uniform growth. Weeding robots employ computer vision and machine learning algorithms to identify and remove weeds without harming the crops. Harvesting robots are equipped with sensors and robotic arms to pick and collect ripe fruits or vegetables.
The agricultural sector is facing a shortage of skilled labor in many regions around the world. This has led to an increased demand for agricultural robots as they offer a viable solution to mitigate the impact of labor shortages. Additionally, they are designed to optimize farming operations and enhance productivity. With their precision and accuracy, these robots can perform tasks such as planting, weeding, and harvesting more efficiently than human labor. Other than this, these robots help in reducing labor costs over time, as they require minimal human intervention once set up. They can operate in a precise and targeted manner, optimizing the use of resources such as water, fertilizers, and pesticides. By applying these inputs only where needed, agricultural robots contribute to cost reduction and more sustainable farming practices. Besides this, rapid advancements in robotics, automation, and artificial intelligence (AI) have significantly improved the capabilities of agricultural robots. These technologies enable robots to perform complex tasks, navigate through fields autonomously, and make data-driven decisions based on real-time information. Moreover, the growing awareness of environmental issues and the need for sustainable agricultural practices is driving the product adoption.
Agricultural Robots Market Trends/Drivers:
Labor Shortage in the Agriculture Sector
One of the major drivers for the adoption of agricultural robots is the persistent shortage of skilled labor in the agricultural sector. Various regions are experiencing a decline in the availability of farm workers, leading to challenges in carrying out labor-intensive tasks. These robots provide a solution by reducing the reliance on human labor. These robots can work autonomously, without the need for constant supervision, and can perform repetitive tasks efficiently and accurately. By automating tasks such as planting, weeding, and harvesting, agricultural robots help farmers overcome labor shortages, increase productivity, and reduce operational costs.
Technological Advancements
Rapid advancements in robotics, automation, and AI are driving the adoption of agribots. These technologies have significantly improved the capabilities of agricultural robots, making them more versatile, efficient, and cost-effective. For instance, the integration of computer vision and machine learning algorithms allows robots to identify and differentiate between crops and weeds, enabling targeted and precise weed control. Navigation systems and sensors enable robots to maneuver through fields and avoid obstacles. The availability of advanced sensors, such as cameras and multispectral imaging, provides real-time data for crop monitoring and optimization. These technological advancements make agricultural robots more capable of performing complex tasks and decision-making, thus driving their adoption in the agricultural industry.
Environmental Concerns
The growing environmental concerns and the need for sustainable farming practices are major drivers for the product adoption. Traditional farming practices often involve the excessive use of fertilizers, pesticides, and water, leading to environmental pollution and resource depletion. Agricultural robots offer more precise and targeted application of resources, resulting in reduced chemical usage and optimized resource utilization. For instance, robots equipped with precision spraying systems can apply pesticides only where needed, minimizing chemical runoff and environmental impact. Similarly, robotic systems for irrigation can optimize water usage by delivering water directly to plant roots based on real-time moisture data. By promoting precision farming techniques, these robots help farmers adopt more sustainable practices, reduce environmental footprint, and mitigate the negative impact of agriculture on ecosystems.
Agricultural Robots Industry Segmentation:
IMARC Group provides an analysis of the key trends in each segment of the global agricultural robots market report, along with forecasts at the global and regional levels from 2025-2033. Our report has categorized the market based on product type, application and offering.
Breakup by Product Type:
Unmanned Aerial Vehicles (UAVs)/Drones
Milking Robots
Automated Harvesting Systems
Driverless Tractors
Others
The report has provided a detailed breakup and analysis of the market based on the product type. This includes unmanned aerial vehicles (UAVs)/drones, milking robots, automated harvesting systems, driverless tractors, and others.
Unmanned aerial vehicles, commonly known as drones, have gained significant traction in the agricultural industry. They are equipped with cameras and sensors to capture aerial imagery and collect data for crop monitoring, pest detection, and yield estimation. UAVs enable farmers to obtain a bird's-eye view of their fields, identify crop health issues, and make informed decisions about irrigation, fertilization, and pest control.
Milking robots have revolutionized the dairy industry by automating the milking process. These robots use sensors to identify and attach milking cups to cows' udders, monitor milk yield and quality, and ensure proper hygiene. Milking robots offer increased efficiency, reduced labor requirements, and improved animal welfare. They enable farmers to optimize milk production, monitor individual cow health, and manage milking schedules more effectively.
Automated harvesting systems encompass a range of robots and machinery designed to perform harvesting tasks, such as fruit picking and vegetable harvesting, with minimal human intervention. These systems utilize sensors, computer vision, and robotic arms to identify ripe crops, perform delicate harvesting actions, and sort harvested produce. Automated harvesting systems improve efficiency, reduce labor costs, and minimize damage to crops during the harvesting process.
Driverless tractors, also known as autonomous or self-driving tractors, are equipped with advanced navigation systems, sensors, and GPS technology. These tractors can operate autonomously, performing tasks such as plowing, seeding, and field preparation. They offer precision and accuracy in operations, enable continuous working hours, and reduce human error. Driverless tractors contribute to increased efficiency, improved productivity, and reduced labor requirements in agricultural fields. They also provide benefits such as optimized fuel consumption, reduced soil compaction, and enhanced safety on farms.
Breakup by Application:
Field Farming
Dairy Farm Management
Animal Management
Soil Management
Crop Management
Others
Field farming represent the largest application segment
A detailed breakup and analysis of the market based on the application has also been provided in the report. This includes field farming, dairy farm management, animal management, soil management, crop management, and others.
Agricultural robots in field farming offer several advantages, they enable precise planting and seeding by accurately placing seeds at optimal depths and spacing, resulting in improved crop germination and uniform growth. Weeding robots use computer vision algorithms to identify and remove weeds without damaging the crops, reducing the need for herbicides and minimizing crop competition. Harvesting robots equipped with sensors and robotic arms can efficiently harvest crops, reducing labor requirements and improving productivity. Furthermore, agribots in field farming contribute to the adoption of precision agriculture techniques. By collecting and analyzing real-time data, they provide valuable insights into crop health, growth patterns, and resource requirements. This data-driven approach enables farmers to make informed decisions regarding irrigation, fertilization, and pest management, resulting in optimized resource utilization, increased crop yield, and reduced environmental impact.
Breakup by Offering:
Hardware
Software
Services
Hardware dominates the market
The report has provided a detailed breakup and analysis of the market based on the offering. This includes hardware, software, and services. According to the report, hardware represented the largest segment.
Hardware components form the backbone of agribots, encompassing the physical infrastructure and machinery required for their operation. These components include unmanned aerial vehicles, milking robots, automated harvesting systems, driverless tractors, and various sensors and robotic arms. These hardware offerings are essential for performing specific tasks in the agricultural industry, such as planting, harvesting, and monitoring. Additionally, the demand for hardware components is driven by the diverse range of applications and tasks that agribots are designed to perform. Different types of robots and equipment are required for various agricultural operations, such as field farming, dairy farming, and soil management. Farmers and agricultural businesses rely on these hardware components to carry out tasks efficiently, increase productivity, and optimize resource utilization. Other than this, hardware components often involve significant investment and represent a substantial portion of the overall cost associated with implementing agricultural robots. Therefore, the revenue generated from hardware sales contributes significantly to the market size. As the market for these robots continues to grow, advancements in hardware technologies, such as improved sensors, better robotic arms, and more precise navigation systems, further drive the demand for these components.
Breakup by Region:
North America
Europe
Asia Pacific
Middle East and Africa
Latin America
North America exhibits a clear dominance in the market
The report has also provided a comprehensive analysis of all the major regional markets, which include North America, Europe, Asia Pacific, Latin America, and the Middle East and Africa. According to the report, North America exhibits a clear dominance in the market.
North America has a highly developed and technologically advanced agricultural sector. The region has a long history of embracing innovation in agriculture and has a strong culture of adopting new technologies. This favorable environment has facilitated the rapid adoption of agricultural robots in the region. Additionally, labor shortages in certain agricultural sectors have become a significant challenge in North America. The availability of skilled labor for manual farm operations has declined in recent years. This has created a strong demand for agribots as a solution to address the labor gap and increase operational efficiency. Furthermore, North America is home to several prominent agricultural robot manufacturers and research institutions. These companies and organizations have been at the forefront of developing and commercializing advanced agricultural robots. Their presence in the region has not only contributed to the availability of a wide range of robotic solutions but has also fostered an ecosystem of innovation, knowledge sharing, and expertise in the field. Additionally, government initiatives and support have played a vital role in accelerating the product sales in North America. Governments at various levels have provided funding, incentives, and regulatory support to promote the adoption of advanced technologies in agriculture. These initiatives have encouraged farmers to invest in agricultural robots and have facilitated their integration into existing farming practices.
Competitive Landscape:
The key players are investing in research and development to enhance the capabilities of agricultural robots and develop new solutions to meet the evolving needs of farmers. They are also focusing on strategic partnerships and collaborations to leverage complementary expertise and broaden their market reach. Additionally major players are continuously introducing advanced hardware and software technologies to improve the performance, functionality, and ease of use of agricultural robots. They are integrating sensors, artificial intelligence, and automation technologies to enable robots to perform tasks with greater precision, efficiency, and autonomy. Besides this, key players are investing in data analytics and cloud-based platforms to provide farmers with real-time insights and decision support. Market leaders are expanding their product portfolios to cater to various agricultural applications. They are developing specialized robots for specific tasks such as seeding, weeding, harvesting, and crop monitoring. Key players are also addressing the needs of different farming sectors, including field farming, dairy farming, and greenhouse operations.
The report has provided a comprehensive analysis of the competitive landscape in the market. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:
Deere & Company
Trimble Inc.
Agco Corporation
Lely Holding S.A.R.L
AG Eagle LLC
Agribotix LLC
Agrobot
Harvest Automation
Naio Technologies
Precision Hawk
IBM
Agjunction Inc.
DJI
BouMatic Robotics B.V.
AG Leader Technology
Topcon Positioning Systems Inc.
Autocopter Corp.
Auroras S.R.L.
Grownetics Inc.
Autonomous Tractor Corporation
Key Questions Answered in This Report
1. What is the market size of agricultural robots?
2. What is the expected growth rate of the global agricultural robots market during 2025-2033?
3. What are the key factors driving the global agricultural robots market?
4. What has been the impact of COVID-19 on the global agricultural robots market?
5. What is the breakup of global agricultural robots market based on the product type?
6. What is the breakup of global agricultural robots market based on the application?
7. What is the breakup of global agricultural robots market based on the offering?
8. What are the major regions in the global agricultural robots market?
9. Who are the key players/companies in the global agricultural robots market?
10. What are the current trends in the agricultural robotics market?