1 序文
2 調査範囲と方法論
2.1 調査の目的
2.2 ステークホルダー
2.3 データソース
2.3.1 一次情報源
2.3.2 二次情報源
2.4 市場推定
2.4.1 ボトムアップアプローチ
2.4.2 トップダウンアプローチ
2.5 予測方法
3 エグゼクティブ・サマリー
4 はじめに
4.1 概要
4.2 主要産業動向
5 精密農業の世界市場
5.1 市場概要
5.2 市場パフォーマンス
5.3 COVID-19の影響
5.4 価格分析
5.5 技術別市場構成
5.6 タイプ別市場構成比
5.7 成分別市場構成比
5.8 用途別市場構成比
5.9 地域別市場構成比
5.10 市場予測
5.11 SWOT分析
5.11.1 概要
5.11.2 強み
5.11.3 弱点
5.11.4 機会
5.11.5 脅威
5.12 バリューチェーン分析
5.13 ポーターズファイブフォース分析
5.13.1 概要
5.13.2 買い手の交渉力
5.13.3 供給者の交渉力
5.13.4 競争の程度
5.13.5 新規参入の脅威
5.13.6 代替品の脅威
6 技術別市場構成
6.1 GNSS/GPSシステム
6.1.1 市場動向
6.1.2 市場予測
6.2 GIS
6.2.1 市場動向
6.2.2 市場予測
6.3 リモートセンシング
6.3.1 市場動向
6.3.2 市場予測
6.4 バリアブルレート技術(VRT)
6.4.1 市場動向
6.4.2 市場予測
6.5 その他
6.5.1 市場動向
6.5.2 市場予測
7 タイプ別市場
7.1 自動化・制御システム
7.1.1 市場動向
7.1.2 市場予測
7.2 センシング&モニタリングデバイス
7.2.1 市場動向
7.2.2 市場予測
7.3 農場管理システム
7.3.1 市場動向
7.3.2 市場予測
8 コンポーネント別市場
8.1 ハードウェア
8.1.1 市場動向
8.1.2 市場予測
8.2 ソフトウェア
8.2.1 市場動向
8.2.2 市場予測
9 アプリケーション別市場
9.1 マッピング
9.1.1 市場動向
9.1.2 市場予測
9.2 クロップスカウティング
9.2.1 市場動向
9.2.2 市場予測
9.3 収量モニタリング
9.3.1 市場動向
9.3.2 市場予測
9.4 土壌モニタリング
9.4.1 市場動向
9.4.2 市場予測
9.5 精密灌漑
9.5.1 市場動向
9.5.2 市場予測
9.6 その他
9.6.1 市場動向
9.6.2 市場予測
10 地域別市場内訳
10.1 北米
10.1.1 市場動向
10.1.2 市場予測
10.2 欧州
10.2.1 市場動向
10.2.2 市場予測
10.3 アジア太平洋
10.3.1 市場動向
10.3.2 市場予測
10.4 中東・アフリカ
10.4.1 市場動向
10.4.2 市場予測
10.5 中南米
10.5.1 市場動向
10.5.2 市場予測
11 競争環境
11.1 市場構造
11.2 主要プレイヤー
11.3 主要プレーヤーのプロファイル
11.3.1 アグリボティクス
11.3.2 バイエルクロップサイエンスAG
11.3.3 ケース IH アグリカルチャー
11.3.4 クリアエッグオペレーションズ
11.3.5 コンサービス・コーポレーション
11.3.6 ディア・アンド・カンパニー
11.3.7 Farmers Edge Inc.
11.3.8 フェアポートファームソフトウェア
11.3.9 フューズ・テクノロジーズ
11.3.10 グラニュラーAG
11.3.11 Grownetics Inc.
11.3.12 IBM
11.3.13 Mapshots Inc.
11.3.14 レイヴン・インダストリーズ
11.3.15 SSTソフトウェア
図1:世界:精密農業市場:主な推進要因と課題
図2:世界:精密農業市場:販売額(単位:億米ドル)、2019年~2024年
図3:世界:精密農業市場:図3:精密農業の世界市場:技術別構成比(単位:%)、2024年
図4:世界:精密農業市場:タイプ別構成比(単位:%)、2024年
図5:精密農業の世界市場:図5:精密農業の世界市場:コンポーネント別構成比(%)、2024年
図6:精密農業の世界市場:用途別構成比(%)、2024年図6:精密農業の世界市場:用途別構成比(%)、2024年
図7:精密農業の世界市場:用途別構成比(単位:%)、2024年図7:精密農業の世界市場:地域別構成比(%)、2024年
図8:精密農業の世界市場予測:販売額(単位:億米ドル)、2025年~2033年
図9:世界:精密農業産業:SWOT分析
図10:世界:精密農業産業:バリューチェーン分析
図11:世界の精密農業産業:バリューチェーン分析ポーターのファイブフォース分析
図12:世界:精密農業(GNSS/GPSシステム)市場:販売額(単位:百万米ドル)、2019年および2024年
図13:世界:精密農業(GNSS/GPSシステム)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図14:世界:精密農業(GIS)市場:販売額(単位:百万米ドル)、2019年・2024年
図15:精密農業(GIS)の世界市場予測:販売額(単位:百万米ドル)、2025年~2033年
図16:世界の精密農業(リモートセンシング)市場:販売額(単位:百万米ドル)、2019年・2024年
図17:世界の精密農業(リモートセンシング)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図18:世界の精密農業(可変速度技術)市場:販売額(単位:百万米ドル)、2019年・2024年
図19:精密農業(可変レート技術)の世界市場予測:販売額(単位:百万米ドル)、2025年~2033年
図20:世界の精密農業(その他の技術)市場:販売額(単位:百万米ドル)、2019年・2024年
図21:精密農業(その他技術)の世界市場予測:販売額(単位:百万米ドル)、2025年~2033年
図22:精密農業(自動化・制御システム)の世界市場:販売額(単位:百万米ドル)、2019年・2024年
図23:精密農業(自動化・制御システム)の世界市場予測:販売額(単位:百万米ドル)、2025年~2033年
図24:精密農業(センシング・モニタリング装置)の世界市場:販売額(単位:百万米ドル販売額(単位:百万米ドル)、2019年・2024年
図25:世界:精密農業(センシング・モニタリング機器)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図26:世界:精密農業(農場管理システム)市場:販売額(単位:百万米ドル)、2019年・2024年
図27:世界:精密農業(農場管理システム)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図28:世界:精密農業(ハードウェア)市場:販売額(単位:百万米ドル)、2019年および2024年
図29:世界:精密農業(ハードウェア)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図30:世界:精密農業(ソフトウェア)市場:販売額(単位:百万米ドル)、2019年および2024年
図31:世界:精密農業(ソフトウェア)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図32:世界:精密農業(地図作成アプリケーション)市場:販売額(単位:百万米ドル)、2019年および2024年
図33:世界:精密農業(地図作成用途)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図34:世界:精密農業(作物偵察における用途)市場:販売額(単位:百万米ドル)、2019年・2024年
図35:世界:精密農業(作物スカウティングにおける用途)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図36:世界:精密農業(収量モニタリングへの応用)市場:販売額(単位:百万米ドル)、2019年および2024年
図37:世界:精密農業(収量モニタリングにおける用途)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図38:世界:精密農業(土壌モニタリングへの応用)市場:販売額(単位:百万米ドル)、2019年および2024年
図39:世界:精密農業(土壌モニタリングにおける用途)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図40:世界:精密農業(精密灌漑における用途)市場:販売額(単位:百万米ドル)、2019年・2024年
図41:世界:精密農業(精密灌漑における用途)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図42:世界:精密農業(その他の用途)市場:販売額(単位:百万米ドル)、2019年・2024年
図43:世界:精密農業(その他の用途)市場予測:販売額(単位:百万米ドル)、2025年~2033年
図44:北米:精密農業市場:販売額(単位:百万米ドル)、2019年および2024年
図45:北米:精密農業市場予測精密農業市場の予測:販売額(単位:百万米ドル)、2025年~2033年
図46:ヨーロッパ:精密農業市場:販売額(単位:百万米ドル)、2019年および2024年
図47:欧州:精密農業市場予測:2019年および2024年精密農業市場の予測:販売額(単位:百万米ドル)、2025年~2033年
図48:アジア太平洋地域:精密農業市場:販売額(単位:百万米ドル)、2019年および2024年
図49:アジア太平洋地域:精密農業市場予測精密農業市場の予測:販売額(単位:百万米ドル)、2025年~2033年
図50:中東・アフリカ:精密農業市場:販売額(単位:百万米ドル)、2019年および2024年
図51:中東およびアフリカ:精密農業市場の予測:販売額(単位:百万米ドル)、2025年~2033年
図52:ラテンアメリカ:精密農業市場:販売額(単位:百万米ドル)、2019年および2024年
図53:ラテンアメリカ:精密農業市場の予測:販売額(単位:百万米ドル)、2025年~2033年
図54:精密農業機器の製造:詳細なプロセスフロー
表一覧
表1:世界:精密農業市場:主要産業ハイライト、2024年と2033年
表2:世界:精密農業市場予測:技術別内訳(単位:百万米ドル)、2025年~2033年
表3:精密農業の世界市場予測:タイプ別内訳(単位:百万米ドル)、2025年~2033年
表4:精密農業の世界市場予測:コンポーネント別内訳(単位:百万米ドル)、2025-2033年
表5:精密農業の世界市場予測:用途別内訳(単位:百万米ドル)、2025-2033年
表6:精密農業の世界市場予測:地域別内訳(単位:百万米ドル)、2025年~2033年
表7:精密農業機器:原材料所要量
表8:世界:精密農業市場:競争構造
表9:世界:精密農業市場:主要プレイヤー
The global precision agriculture market size reached USD 9.3 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 21.5 Billion by 2033, exhibiting a growth rate (CAGR) of 9.66% during 2025-2033. The market is experiencing steady growth driven by the growing focus on the adoption of sustainable farming practices, rising consumption of fresh vegetables to prevent the occurrence of lifestyle diseases, and increasing integration of global positioning system (GPS) technology to improve farming practices.
Precision Agriculture Market Analysis:
Market Growth and Size: The precision agriculture market is experiencing strong growth, driven by the increasing need for food security and adoption of sustainable farming practices.
Major Market Drivers: Key drivers include technological advancements in sensors, global positioning system (GPS), and data analytics, a growing global population, and rising environmental concerns and sustainability goals.
Technological Advancements: Rapid technological advancements in sensors, GPS systems, drones, and data analytics are empowering farmers to make informed decisions about crop management.
Industry Applications: Precision agriculture is applied across various segments, including mapping, crop scouting, yield monitoring, soil monitoring, and precision irrigation, each contributing to optimizing farming practices.
Key Market Trends: Major trends include the integration of artificial intelligence (AI), machine learning (ML), and big data analytics, and enhanced connectivity for seamless communication between equipment and software platforms.
Geographical Trends: Asia Pacific leads the market share due to the rising adoption of precision agriculture in the region. Nonetheless, North America is emerging as a fast-growing market on account of the increasing focus on utilizing sustainable farming methods.
Competitive Landscape: Key players in the precision agriculture market are investing in research and development (R&D), focusing on expanding their product portfolios, and integrating advanced technologies like AI and ML.
Challenges and Opportunities: Challenges include the high initial investment costs, data privacy concerns, and the need for farmer education and training. However, opportunities for expanding precision agriculture adoption in emerging markets and developing innovative solutions for resource optimization and sustainable farming are projected to overcome these challenges.
Precision Agriculture Market Trends:
Technological Advancements
Precision agriculture is experiencing transformation driven primarily by significant technological advancements in the agricultural sector. Innovations in sensors, global positioning system (GPS) technology, unmanned aerial vehicles (UAVs) or drones, and sophisticated data analytics are revolutionizing farming practices. These advancements provide farmers with an array of tools and data sources to optimize their operations. Advanced sensors can collect data on soil moisture, temperature, and nutrient levels, allowing farmers to make data-driven decisions regarding irrigation and fertilization. GPS systems enable precision in planting and harvesting, ensuring that crops are planted at the optimal depth and harvested at the peak of ripeness. Drones equipped with cameras and multispectral sensors provide aerial imagery, helping farmers detect crop stress, diseases, or pests early on. Data analytics play a crucial role in processing and interpreting the vast amounts of data generated by these technologies. Farmers can analyze historical data, weather patterns, and real-time information to make informed choices about when and how to plant, irrigate, and apply fertilizers or pesticides. This level of precision not only increases crop yields but also reduces resource waste, making agriculture more sustainable.
Increasing Need for Food Security
The increasing need for global food security is propelling the growth of the market. There is a rise in the demand for increased agricultural productivity to ensure an adequate food supply for the growing population around the world. Precision agriculture plays a pivotal role in addressing this challenge. By optimizing farming practices and improving resource management, it enables farmers to produce more food with fewer resources. This includes precise control over irrigation, fertilization, and pest management, which results in higher crop yields and reduced waste. Governing agencies of various countries and international organizations are recognizing the importance of food security and are actively promoting sustainable agricultural practices. Precision agriculture aligns perfectly with these goals as it not only enhances productivity but also minimizes the environmental impact of farming. This makes it an attractive choice for policymakers and agricultural stakeholders worldwide. Additionally, precision agriculture offers a solution by empowering local and regional food production, reducing reliance on long-distance supply chains, and enhancing resilience in times of crisis.
Environmental Concerns and Sustainability
Precision agriculture is gaining prominence due to heightened environmental concerns and the urgent need for sustainable farming practices. Traditional farming methods are often associated with overuse of fertilizers and pesticides, excessive water consumption, and soil degradation. Precision agriculture addresses these issues by promoting efficient and environment-friendly farming. One of the core principles of precision agriculture is to minimize resource wastage. By using advanced technology, such as sensors, GPS, and data analytics, farmers can precisely tailor their inputs, including water, fertilizers, and pesticides, to the specific needs of their crops. This targeted approach not only boosts yield but also reduces the environmental impact, such as groundwater contamination and soil erosion. Furthermore, precision agriculture contributes to the preservation of natural habitats and biodiversity. Moreover, by reducing the use of chemicals and optimizing land use, it minimizes the disruption of ecosystems and promotes a healthier balance between agriculture and the environment.
Precision Agriculture Industry Segmentation:
IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the global and regional levels for 2025-2033. Our report has categorized the market based on technology, type, component, and application.
Breakup by Technology:
GNSS/GPS Systems
GIS
Remote Sensing
Variable Rate Technology (VRT)
Others
GNSS/GPS systems account for the majority of the market share
The report has provided a detailed breakup and analysis of the market based on the technology. This includes GNSS/GPS systems, GIS, remote sensing, variable rate technology (VRT), and others. According to the report, GNSS/GPS systems represented the largest segment.
Global navigation satellite system (GNSS)/global positioning system (GPS) enables accurate mapping and tracking of farm equipment, allowing farmers to precisely determine their position within a field. GPS-guided tractors and equipment ensure straight and uniform rows, efficient use of inputs, and reduced overlap, resulting in cost savings and increased productivity. With the widespread adoption of GPS systems, farmers can create detailed field maps, manage variable rate applications, and monitor the performance of machinery in real-time, all of which contribute to improved farm management and higher yields.
Geographic information systems (GIS) are crucial for precision agriculture as they enable farmers to collect, store, and analyze spatial data related to their fields. GIS technology helps in creating accurate digital maps of farms, incorporating information on soil types, topography, and past yield data. This data can be used for precise decision-making, such as identifying areas with specific soil deficiencies or planning drainage systems to optimize water management.
Remote sensing involves the use of satellites, drones, or aircraft to capture high-resolution imagery and data about crop conditions. This technology provides valuable insights into crop health, identifying issues like pest infestations or nutrient deficiencies early on. By analyzing remote sensing data, farmers can make timely interventions, reducing the need for broad-spectrum treatments and minimizing environmental impact.
Variable rate technology (VRT) allows farmers to apply inputs like fertilizers, pesticides, and irrigation water at variable rates across their fields. This technology is particularly valuable for optimizing resource usage, reducing waste, and maximizing yields. VRT relies on data from GPS, GIS, and remote sensing to create prescription maps that guide the precise application of inputs based on the specific needs of different areas within a field.
Breakup by Type:
Automation and Control Systems
Sensing and Monitoring Devices
Farm Management Systems
Automation and control systems hold the largest share in the industry
A detailed breakup and analysis of the market based on the type have also been provided in the report. This includes automation and control systems, sensing and monitoring devices, and farm management systems. According to the report, automation and control systems accounted for the largest market share.
Automation and control systems are the cornerstone of precision agriculture, offering farmers advanced tools to streamline their operations. These systems encompass a range of technologies, including automated machinery, robotic equipment, and control software. Automated tractors can navigate fields autonomously, optimizing planting, harvesting, and cultivation processes. Robotics are used for tasks like precision weeding and harvesting, reducing labor costs and increasing efficiency. With the integration of these technologies, farmers can achieve higher levels of precision, reduce human error, and ultimately enhance their overall productivity.
Sensing and monitoring devices play a pivotal role in precision agriculture by providing real-time data on various aspects of crop and soil health. These devices include soil sensors, weather stations, and crop health sensors. Soil sensors measure moisture levels and nutrient content, enabling farmers to apply irrigation and fertilizers precisely where needed. Weather stations provide accurate meteorological data, helping farmers make informed decisions regarding planting and harvesting.
Farm management systems are comprehensive software solutions designed to assist farmers in planning, monitoring, and optimizing their agricultural activities. These systems integrate data from various sources, including sensors, global positioning systems (GPS), and remote sensing, to provide a holistic view of farm operations.
Breakup by Component:
Hardware
Software
Hardware represents the leading market segment
The report has provided a detailed breakup and analysis of the market based on the component. This includes hardware and software. According to the report, hardware represented the largest segment.
Hardware components are fundamental to the infrastructure of precision agriculture. This segment encompasses a wide range of physical devices and equipment, including global positioning system (GPS) receivers, sensors, drones, automated machinery, and other tangible tools used on the farm. GPS receivers and guidance systems are integral for accurate positioning and navigation, enabling precise planting, harvesting, and field operations. Sensors, such as soil moisture and crop health sensors, provide real-time data crucial for informed decision-making. Drones equipped with cameras and multispectral sensors capture aerial imagery for crop monitoring and analysis. Automated machinery, like tractor guidance systems and robotic implements, streamline tasks, reduce labor costs, and improve overall farm efficiency. Hardware is the backbone of precision agriculture, enabling farmers to implement data-driven practices and optimize resource utilization.
Software plays a pivotal role in harnessing the potential of hardware components and converting data into actionable insights for farmers. This segment includes farm management software, data analytics tools, and applications for mobile devices and computers. Farm management software integrates data from sensors, GPS, and other sources to create digital farm maps, monitor equipment, and generate recommendations for resource allocation. Data analytics software processes vast amounts of data to identify trends, patterns, and anomalies, allowing farmers to make data-driven decisions.
Breakup by Application:
Mapping
Crop Scouting
Yield Monitoring
Soil Monitoring
Precision Irrigation
Others
Yield monitoring exhibits a clear dominance in the market
A detailed breakup and analysis of the market based on the application have also been provided in the report. This includes mapping, crop scouting, yield monitoring, soil monitoring, precision irrigation, and others. According to the report, yield monitoring accounted for the largest market share.
Mapping is a foundational application of precision agriculture, involving the creation of detailed digital maps of farmland. These maps provide essential spatial information about the field, including soil types, topography, and boundaries. Mapping technology, often aided by global positioning system (GPS) and geographic information systems (GIS) tools, helps farmers plan and optimize their planting, irrigation, and fertilization strategies. Accurate maps guide farm equipment for precise planting and harvesting, reducing overlaps and resource waste. Mapping also aids in the creation of prescription maps for variable rate applications, contributing to overall farm efficiency.
Crop scouting involves the regular and systematic inspection of crops to monitor their health and detect potential issues, such as pest infestations, diseases, or nutrient deficiencies. Precision agriculture is enhancing crop scouting through the use of drones and remote sensing technology. Drones equipped with cameras and multispectral sensors capture high-resolution images of fields, allowing for the early identification of problem areas.
Yield monitoring is the largest segment in precision agriculture and is crucial for assessing crop performance and optimizing productivity. This application involves the collection of data during the harvest process to measure the actual yield of crops in different parts of the field. Yield monitoring systems, often integrated with GPS and sensors, provide real-time data on crop yields, moisture content, and grain quality.
Soil monitoring is vital for precision agriculture as it provides insights into soil health and nutrient levels. This application employs sensors and probes to measure various soil parameters, including moisture content, pH levels, and nutrient concentrations. Soil data is used to create soil maps, helping farmers identify areas with specific deficiencies or excesses.
Precision irrigation is aimed at optimizing water usage in agriculture, a critical concern in resource management. It involves the precise application of water to crops based on real-time data, including soil moisture levels and weather conditions. Automated irrigation systems, guided by sensors and data analytics, enable farmers to deliver the ideal amount of water to each plant.
Breakup by Region:
North America
Europe
Asia Pacific
Middle East and Africa
Latin America
Asia Pacific leads the market, accounting for the largest precision agriculture market share
The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America, Europe, Asia Pacific, the Middle Eastern Africa, and Latin America. According to the report, Asia Pacific accounted for the largest market share.
The Asia Pacific precision agriculture market is driven by factors, such as increasing population, rising food demand, and the adoption of advanced farming technologies. The dominant position of the region is attributed to the widespread implementation of precision agriculture practices in countries like China and India. These nations are witnessing a rise in the use of global positioning system (GPS)-guided machinery, remote sensing, and data analytics to improve agricultural productivity. Furthermore, government initiatives promoting sustainable farming practices and technology adoption are propelling the growth of market in the region.
North America maintains a strong presence driven by the increasing presence of well-established agricultural machinery manufacturers and technology providers.
Europe stands as another key region in the market, driven by factors, such as stringent environmental regulations, the need for sustainable agriculture, and the desire to optimize resource usage.
Latin America exhibits growing potential in the precision agriculture market, fueled by the increasing need to boost crop yields, reduce environmental impact, and address challenges, such as soil degradation.
The Middle East and Africa region show a developing market for precision agriculture, primarily driven by the increasing need to increase agricultural productivity.
Leading Key Players in the Precision Agriculture Industry:
Key players in the precision agriculture market are actively investing in research and development (R&D) to improve technological solutions and expand their product portfolios. They are focusing on integrating artificial intelligence (AI), machine learning (ML), and big data analytics into their offerings to provide farmers with more sophisticated decision support tools. Additionally, many companies are working on enhancing connectivity and data-sharing capabilities to enable seamless communication between farm equipment and software platforms. Sustainability and environmental considerations are also at the forefront, with a focus on developing precision agriculture solutions that minimize resource usage and reduce environmental impact. Moreover, industry leaders are committed to driving innovation and helping farmers achieve higher yields and sustainable farming practices.
The market research report has provided a comprehensive analysis of the competitive landscape. Detailed profiles of all major companies have also been provided. Some of the key players in the market include:
Agribotix
Bayer CropScience AG
Case IH Agriculture
ClearAg Operations
Conservis Corporation
Deere & Company
Farmers Edge Inc.
Fairport Farm Software
Fuse Technologies
Granular AG
Grownetics Inc.
IBM
MapShots Inc.
Raven Industries
SST Software
Key Questions Answered in This Report
1. What was the size of the global precision agriculture market in 2024?
2. What is the expected growth rate of the global precision agriculture market during 2025-2033?
3. What are the key factors driving the global precision agriculture market?
4. What has been the impact of COVID-19 on the global precision agriculture market?
5. What is the breakup of the global precision agriculture market based on the technology?
6. What is the breakup of the global precision agriculture market based on the type?
7. What is the breakup of the global precision agriculture market based on the component?
8. What is the breakup of the global precision agriculture market based on the application?
9. What are the key regions in the global precision agriculture market?
10. Who are the key players/companies in the global precision agriculture market?